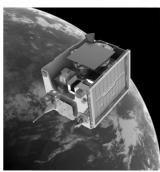


Topics


- TechDemoSat-1 (TDS-1)
- Software Experiments
- Test Bed System
- CCSDS SM&C
- Why SOA
- Next Steps

2

TechDemoSat-1

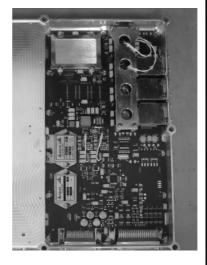
Is a collaborative project to bolster the UK's thriving space industry by providing a low-cost opportunity for innovative commercial and research payloads under development in the UK to gain flight heritage.

- Launches Q3 2013
- Mission Operations managed through Satellite Applications Catapult at Harwell.

CGI

3

ESAW 2013



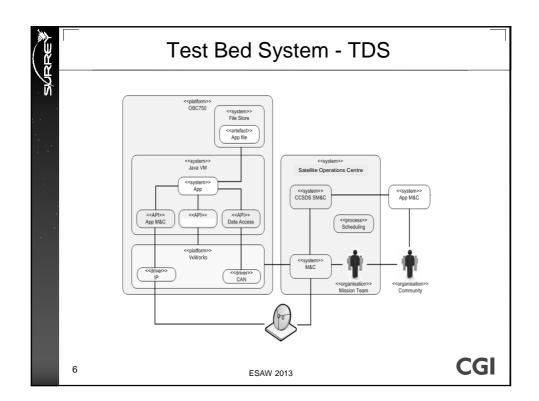
OBC750 & Software Experiments

- TDS-1 flies SSTL's OBC750 next Generation On-Board Computer.
 - New Product Development
- High-performance OBC:
 - 1333 Dhrystone 2MIPS,
 - 296 Whetstone MWIPS
 - 16 MiBytes EEPROM for boot software
 - 256Mbytes RAM memory
 - IP comms with ground.
- On TDS-1 there are spare resources to operate the satellite and run software experiments:
 - OBC750 provides memory protection mechanisms in Hardware and Operating
- Anticipated that operational time will be available to run software experiments after 1st year of operations

 - This will provide a unique test bed allowing approaches to be validated in orbit.

 The aim is to reduce the barriers to fly novel techniques and promote innovation.

CGI



Test Bed System

- SSTL and Logica (now CGI) have been working together on new approaches to Satellite System Software.
 - Next Generation On-Board Software (NGOBS) project
 - Aim to run on TechDemoSat-1
- · Aims:
 - To use COTS open-source approaches and software where possible
 - Reduce barriers to development e.g Avoid expensive toolsets.
 - Allow flexibility to easily move functionality around system.
 - To investigate mechanisms to implement CCSDS SM&C protocols.
- Initially looked at feasibility of flying Android on Satellites.
 - We successfully ran Android on OBC750
 - Chose alternative approach Java Test-Bed using JamaicaVM
 - Lower risk approach as we wanted to run VxWorks together with Test-Bed.
 - Didn't need many of the Android functions
 - Development could still use Open-Source Toolsets.
- Ground System Hummingbird Open-Source Mission Control System
 - Java Based

5 ESAW 2013

CGI

Test Bed - OSGI

- The team chose to employ OSGI for Satellite Test-Bed System.
 - OSGi technology is a set of specifications that define a dynamic component system for Java.
 - Applications are (dynamically) composed of many different (reusable) components.
 - Advantages:
 - Service Modularisation
 - · Service and Application Management
 - Resource Management
 - Service and Application Security
 - Technology exists and widely supported.
 - Already in use for Hummingbird.

- We chose to use 'Felix' implementation for on-board system
 - Lighter weight than Karaf used for Hummingbird

CGI

Test Bed: Services Implemented on board.

ESAW 2013

- Broadcast Telemetry
- · Solicited Telemetry
- · Telecommand:
 - Basic level to OBC tasks
 - Basic level to CAN (Satellite TT&C network)
 - Firewall layer incorporated to protect satellite.
- Messaging (socket comms) User defined
- Felix/OSGI provides:
 - Application Deployment
 - Web Services
 - http bundle
- File Transfer:
 - Saratoga protocol
 - Standard ftp

Felix On-board Web Console

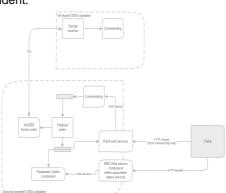
8

ESAW 2013

CCSDS SM&C

- The Team wanted to use the NGOBS project to explore CCSDS SM&C aspects
- Findings:
 - Difficult to find information on implementation details.
 - Standards incomplete with regards standardised services
 - Standards can be interpreted in multiple ways.
 - Goals of Standard was sound.
- Decision
 - Develop own services to satisfy SM&C goals.
 - · Protocol and language agnostic.
 - Where possible match SM&C API implementation (Java)
 - Use COTS approaches and Tools

ESAW 2013


CGI

CGI

CCSDS SM&C approach

- · Hummingbird provides SM&C proxy for Satellite
- · Comms between Client and proxy to use HTTP, JSON and XML
 - Protocol and language independent.
- Implemented system for SM&C Parameter Service Status.
- OSGi Bundle created to brokers requests.
- This approach can then be expanded for other SM&C services

10

CCSDS SM&C: Deployment on-board

- On-Board system could service SM&C requests directly (without using proxy)
- Need to consider restricted link speeds to OBC
 - TDS-1: Uplink 19k2 bit/s Downlink 38k4 bits/s
 - Using http, JSON etc... introduces overheads
- Recommendations
 - For routine services using more of link: Employ proxy
 - · Also helps with flow control to/from satellite.
 - For services with lower data requirements and experiments quicker to develop based on Satellite servicing requests.
 - Note: More work in this area is necessary
- Because Satellite and Ground use common approaches, easier to adapt system!

11 ESAW 2013

CGI

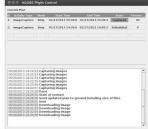
Why SOA? - Example Benefit to Mission

- Team wanted to ensure that there is a tangible benefit of SOA to mission in addition to potential cost savings.
 - Explain using example.
- Potential Benefit: Opens up new ways of autonomously operating Satellites!
 - Exchange of information can be much more dynamic and hence CONOPS can be evolved.
 - Approach to updating software makes it quicker to adapt system to optimise operations during service.
- · Case Study: Imaging Payload Operations.
 - We identified that we can get more useful data from an Imaging Satellite in two ways:
 - Adjust Imaging Schedule to take account of actual compression ratios achieved.
 - Choose to discard Images for download based on Cloud Maps
- · Current scheme.
 - No interaction between Planning System and Satellite during contact.
 - i.e. Telemetry received is processed and passed to MPS post-pass
 - Any change to plan is communicated on next contact.
 - This limits the potential benefits.

C

12

Why SOA? - Example Benefit to Mission


• Envisaged Scenario - Every contact:

Pre-Contact

- MPS receives Weather info (Web Services link)
- MPS re-plans deciding not to download certain Images. (No point in downloading cloudy images)

During Contact

- At start of Satellite contact the MPS can delete the files & issues new download schedule
- MPS requests file sizes of Images on-board
- MPS re-plans using the received info to adjust Imaging Plan
- MPS sends new schedule to Satellite.
- Result: We are getting more useful data from Satellite, by changing operational scheme.
- We have prototyped a demo showing this scheme in action!
 - Uses Test-Bed
 - Based on data exchanged for DMC satellites.

Demo: Progress Monitoring of OBC

13

Next Steps

ESAW 2013

- Launch & commission TDS-1.
- · Commission payloads
 - OBC750 is a new product development.
- · Call for Software Experiments
 - These don't have to use Java Test-Bed.
 - Expect operational time for experiments to be available after 1st year of operation.
 - Experiments will need to be co-ordinated with Satellite Applications Catapault.
 - See http://sa.catapult.org.uk/
 - Primarily for UK Industry and Academia
- Experiments expected to question classical separation of Ground and Space Systems
 - Test Bed for Space Software
 - E.g. CCSDS SM&C and file based operations.
- Use outcome of experiments for future missions!

CG

